A brain–computer interface using electrocorticographic signals in humans

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A brain-computer interface using electrocorticographic signals in humans.

Brain-computer interfaces (BCIs) enable users to control devices with electroencephalographic (EEG) activity from the scalp or with single-neuron activity from within the brain. Both methods have disadvantages: EEG has limited resolution and requires extensive training, while single-neuron recording entails significant clinical risks and has limited stability. We demonstrate here for the first ...

متن کامل

Reconstruction of reaching movement trajectories using electrocorticographic signals in humans

In this study, we used electrocorticographic (ECoG) signals to extract the onset of arm movement as well as the velocity of the hand as a function of time. ECoG recordings were obtained from three individuals while they performed reaching tasks in the left, right and forward directions. The ECoG electrodes were placed over the motor cortex contralateral to the moving arm. Movement onset was det...

متن کامل

Decoding flexion of individual fingers using electrocorticographic signals in humans.

Brain signals can provide the basis for a non-muscular communication and control system, a brain-computer interface (BCI), for people with motor disabilities. A common approach to creating BCI devices is to decode kinematic parameters of movements using signals recorded by intracortical microelectrodes. Recent studies have shown that kinematic parameters of hand movements can also be accurately...

متن کامل

Decoding covert spatial attention using electrocorticographic (ECoG) signals in humans

This study shows that electrocorticographic (ECoG) signals recorded from the surface of the brain provide detailed information about shifting of visual attention and its directional orientation in humans. ECoG allows for the identification of the cortical areas and time periods that hold the most information about covert attentional shifts. Our results suggest a transient distributed fronto-par...

متن کامل

Two-dimensional movement control using electrocorticographic signals in humans.

We show here that a brain-computer interface (BCI) using electrocorticographic activity (ECoG) and imagined or overt motor tasks enables humans to control a computer cursor in two dimensions. Over a brief training period of 12-36 min, each of five human subjects acquired substantial control of particular ECoG features recorded from several locations over the same hemisphere, and achieved averag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Neural Engineering

سال: 2004

ISSN: 1741-2560,1741-2552

DOI: 10.1088/1741-2560/1/2/001